首页> 外文OA文献 >A unified continuum and variational multiscale formulation for fluids, solids, and fluid-structure interaction
【2h】

A unified continuum and variational multiscale formulation for fluids, solids, and fluid-structure interaction

机译:流体的统一连续和变分多尺度配方,   固体和流体 - 结构相互作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We develop a unified continuum modeling framework for viscous fluids andhyperelastic solids using the Gibbs free energy as the thermodynamic potential.This framework naturally leads to a pressure primitive variable formulation forthe continuum body, which is well-behaved in both compressible andincompressible regimes. Our derivation also provides a rational justificationof the isochoric-volumetric additive split of free energies in nonlinearcontinuum mechanics. The variational multiscale analysis is performed for thecontinuum model to construct a foundation for numerical discretization. Wefirst consider the continuum body instantiated as a hyperelastic material anddevelop a variational multiscale formulation for the hyper-elastodynamicproblem. The generalized-alpha method is applied for temporal discretization. Asegregated algorithm for the nonlinear solver is designed and carefullyanalyzed. Second, we apply the new formulation to construct a novel unifiedformulation for fluid-solid coupled problems. The variational multiscaleformulation is utilized for spatial discretization in both fluid and solidsubdomains. The generalized-alpha method is applied for the whole continuumbody, and optimal high-frequency dissipation is achieved in both fluid andsolid subproblems. A new predictor multi-corrector algorithm is developed basedon the segregated algorithm to attain a good balance between robustness andefficiency. The efficacy of the new formulations is examined in severalbenchmark problems. The results indicate that the proposed modeling andnumerical methodologies constitute a promising technology for biomedical andengineering applications, particularly those necessitating incompressiblemodels.
机译:我们使用吉布斯自由能作为热力学潜力,为粘性流体和超弹性固体建立了统一的连续体建模框架,该框架自然导致了连续体的压力原始变量公式化,在可压缩和不可压缩状态下均表现良好。我们的推导还为非线性连续体力学中的自由能的等容-体积加性分流提供了合理的证明。对连续谱模型进行了变分多尺度分析,为数值离散化奠定了基础。我们首先考虑实例化为超弹性材料的连续体,并为超弹性动力学问题开发变分多尺度公式。广义α方法适用于时间离散化。设计并仔细分析了非线性求解器的集合算法。其次,我们应用新公式来构造流固耦合问题的新型统一公式。变分多尺度公式用于流体和固体子域中的空间离散化。广义α方法适用于整个连续体,并且在流体和固体子问题中均实现了最佳的高频耗散。在分离算法的基础上,开发了一种新的预测器多校正器算法,以实现鲁棒性和效率之间的良好平衡。在一些基准问题中检查了新制剂的功效。结果表明,所提出的建模和数值方法构成了用于生物医学和工程应用的有前途的技术,特别是那些需要不可压缩模型的技术。

著录项

  • 作者

    Liu, Ju; Marsden, Alison L.;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号